• 探讨易用性中的易发现性

    产品设计 2023-11-16

    有时候,我们需要让用户注意到产品中的重要信息,以方便用户进行后续的环节。那么,我们要怎么增强关键信息的“易发现性”呢?如果想要减弱“易发现性”,又可以怎么做?本文尝试从三个方面阐述了“易发现性”该如何控制,一起来看看吧。

    一、什么是易发现性

    在《GB/T 29836-2013 系统与软件易用性》的人机交互系统模型中,我们可以了解到其中有一环是“感知系统(视觉、听觉等)”。在交互系统中,发现信息是必不可少的一环。如果产品中的重要信息没有被用户“发现”,或者很难被“发现”。那么对用户的体验是毁灭性的,没能注意到信息,那下面的环节就无法进行了。

    比如在一个购物场景中,用户都选好商品准备付款了,但是发现找不到“付款”按钮。最后导致没有付款成功。所以产品需要在当前场景中,让关键信息具备好的“可发现性”。

    二、如何增强、减弱可发现性

    我们的感知觉是我们接收外界刺激的一个重要渠道。知觉是一个庞大的概念,其包含的内容可以再分为视知觉、听知觉、嗅知觉、触知觉和味知觉。

    可发现性如此重要,我们可以从感管几种方面入手分析如何增强、减弱可发现性。

    1. 视觉

    在我们的日常学习工作当中,大部分的信息都是通过视觉通道输入我们大脑的,正常人从外界接收的信息中百分之八十是通过视觉获得的。它在学习工作当中占据了非常重要的位置。

    1)大小

    一个东西很小眼睛就不容易捕捉到。如果是体型巨大,整个压在眼前的话。甚至不得不去注意。如下图中,图片A在右侧的例子中因为变大,更容易被用户发现。

    2)颜色

    下图是一个视觉例子,要用户注意到第三行第三个字。下面有图把“这”这个字赋予了蓝色,让它和其他的汉字区别开来。

    3)位置

    ① 单屏的浏览顺序

    位置的重要程度,参考古腾堡原则,它把画面所呈现的内容分成四个象限。

    1. 第一视觉区(POA):左上方,用户首先注意到的地方;
    2. 强休息区(SFA):右上方,较少被注意到;
    3. 弱休息区(WFA):左下方,最少被注意到;
    4. 终端视觉区(TA):右下方,视觉流终点。

    用户视线很自然的会从第一视觉区开始,逐渐移动到终端休息区。整个阅读过程视线都会沿着一条方向轴开始从左到右浏览。用户会更容易关注到页面的开始与结束区域,而中间的段落则很少被关注到。

    所以设计界面的时候要把重要的东西放在“第一视觉区”和“终端休息区”。

    ② 多屏的浏览顺序

    那么用户在跨屏幕的浏览情况如何呢?下面的聚合热图显示了各种页面的 57,453 个眼球追踪注视。红色表示用户看最多的地方;黄色是他们看起来较少的地方。白色区域几乎没有任何外观。顶部的黑色条纹表示研究中的页面折叠;随后的黑色条纹代表滚动后的每个附加屏幕。

    “发现用户注意力在页面折叠位置急剧下降。首屏上方的元素比首屏下方的元素看到的次数更多:首屏上方 100 个像素的观看次数比首屏下方 100 个像素的观看次数多 102%”。

    所以要非常重视首屏的价值,因为用户往往不会继续往下滚动了。

    如果要提高第二屏的浏览率,应该从图形上暗示下面还有内容,而不是给一个看起来完整的界面。如下图所示。右图的笔记本图片的下半部分被截断,用户为了看完整的图片会往下滚动。

    4)动效

    bilibili中自己关注的博主进行直播时,出现如下图效果。不单是个性化具备吸引力,而且右上角的图表的动态效果,也一下子被注意到。根据生活体验,动态效果吸引注意力的能力很强,能让人快速注意到该内容。同时也意味着它对别的内容有较强的打扰效果,要注意非常节制。

    2. 听觉

    生活中我们有时候会忘记自己的手机放在哪里,这时候只有用另外一个通讯设备打电话给手机。手机发出铃声,那么就可以知道手机的位置,从而找到它了。还有微信发送消息的声音,一下子让你感受到工作的压力(打工人有感)这些就是听觉的可发现性。

    3. 更少的内容

    在《How Little Do Users Read?》一文中,作者通过实验揭示了用户在网站上的阅读情况。结果显示,用户只会浏览一小部分文字,不会看完所有的文字。

    下图为“文本阅读百分比”这一段中的图片,显示了用户在平均访问不同字数的页面期间可以阅读的最大文本量。我们可以看到字数越少,用户看内容的比例就越大。所以精简文字信息,可以帮助用户看到完全的内容。

    不要滥用:

    上面有各种方法让某元素更加明显或者不明显。在工作中常常会出现这么一个问题:界面上的很多元素都很重要。比如会员开通跟核心Kpi相关很重要,所以要明显。核心权益很重要要,需要明确地显示出来。但是人的注意力是有限的,所有东西都重要,都很明显。那么意思就是都不重要。

    视觉上的重要程度,需要有主次才能被体现出来。

    PS:冯·雷斯托夫效应 (Von Restorff Effect) ,也称为隔离效应 (Isolation Effect) 。1933 年,德国精神病学家、儿科医生 Hedwig Von Restorff 在研究中发现,对被测试者提供一系列相似的项,而只有一项显得特别、孤立、与众不同的时候,这一项往往更容易被记住。以上的视觉、听觉、触觉的例子都是从不同角度下“冯·雷斯托夫效应”的现象。

    总结

    易发现性在用户与交互对象之间有重要的作用,能够帮助用户找到自己想要的内容。本文用“视觉”、“听觉”、“更少的内容”3个方面进行阐述了如何控制易发现性。希望这篇文章可以帮助到其他的设计师。

  • VR 不完全科普指南

    产品设计 2023-11-16

    大家都了解VR是一种可以创建和体验虚拟世界的计算机仿真系统,是利用计算机从而生成一种模拟环境,可以让用户沉浸到该环境中。下面这篇文章是笔者整理的关于VR的科普内容,想要了解的同学可以进来看一看。

    一、上帝的画笔

    你有没有想过创造一个世界?

    或者,如果让你当创世神的话,你知道该怎么构造这个世界吗?

    千百年来,人类一直试图回答这个问题:用语言、用图像、用视频。可是还是不够。我们从未能真正重现我们所感受的世界,只能凭借真实经验的脑补,将它们当做真的而已。

    媒介限制了我们对世界的描摹。

    有没有一种方式,能够让我们真正地拿起上帝的画笔?

    有一群人,试图用 VR 给出答案。

    VR 的历史可以追溯至 20 世纪 60 年代,Philco (现被飞利浦收购)的两位工程师 Charles Comeau 和 James Bryan 制造出了一款用于军事目的头戴式显示器 HeadSight,该设备能够显示来自隔壁房间摄像头的视频画面,摄像头的位置可根据佩戴者的头部移动而移动,从而塑造出一种临场感。

    图一,图片来自 THE VR SHOP

    作为人类历史上的第一款量产头戴式显示器,Philco Headsight 的视场角仅有 40°,刷新率也仅有 10 Hz,而重量则是…未知。

    60 余年过去了,早 Philco Headsight 五年的达特茅斯会议,经历过潮起潮落,终于在上一年迎来了它们最重磅的主角:ChatGPT。

    而头戴式设备也并非吴下阿蒙,空间定位、眼动追踪、手势识别、Micro LED、Pancake 光学模组,硬件、算法与工程学的结合,让上帝的画笔呼之欲出。

    接下来,就让我们进一步走进 VR 的世界。

    二、我们应该如何呈现世界?

    正如把大象塞进冰箱需要三步,制造一台 VR 设备也是如此:

    1. 让世界在我们的眼前呈现。
    2. 让世界与我们进行实时地交互。
    3. 把一切都塞到一台头戴式设备上,让其独立运行。

    我们先来谈第一步。

    让世界在我们的眼前呈现,这件事我们并不陌生,已然创造了一个赛博世界的我们,透过手机的屏幕,另一个世界的光映入眼中。把手机换成 VR 设备,道理也是一样的:我们需要一块屏幕,然后我们把屏幕的光映入眼中。

    1. 一块屏幕

    我们需要一块屏幕,以显示另一个世界的丰富。古早的时候,因为看重 AMOLED 的色彩饱和度,VR 显示屏用的都是 AMOLED,但 AMOLED 的像素密度低且难以提升,并且存在纱窗效应(像素低导致的,人眼可以看到像素点),所以便更换成了 LCD 。

    LCD 是液晶显示屏,对比度、色域、亮度都不够,同时刷新率低。为了改善 LCD,Fast-LCD 又被引入,顾名思义,Fast-LCD 采用了超速驱动技术,刷新率可以提升到 75-90 Hz,同时用了新的液晶材料,呈像效果上也有所改善。

    但 Fast-LCD 仍然存在问题,由于是背光技术,不能自发光,需要有背光光源,所以面板上容易出现漏光现象。为了解决这个问题,业内通常采用 Fast-LCD + Mini LED 背光光源的方案,将 Mini LED 作为 Fast-LCD 的背光光源。Mini LED 实际上就是在背板上集成了尺寸更小的 LED 灯珠,所以亮度、对比度都会有所增强。

    目前,Fast-LCD + Mini LED 背光光源已成为 XR 设备的主流方案, 但 Micro OLED 和 Micro LED 将是未来的探索方向。两者都是自发光技术,无需背光,无论从色域、亮度、对比度,还是功耗、分辨率等方面都领先其他方案。随着Apple vision pro 采用 Micro OLED,Micro OLED 的发展将进一步加速。

    图二,表格由 MicroDisplay 整理

    2. 把光映入眼中

    如果说把手机的光映入眼帘,是一件再自然不过的事。VR 设备的光就有所讲究了,从业者至少需要解决三个问题:

    1. 近眼成像:视力正常者的最小物距(物体距离眼睛的距离)是 14 cm,而 VR 设备的屏幕物距仅 3-4 cm。
    2. 深度感知:VR 设备的屏幕呈现的是 2D 画面,而沉浸式体验需要 3D 呈现。
    3. 视觉放大:VR 设备的屏幕仅为普通眼镜大小,而 VR 画面渲染需要与现实世界同等尺寸乃至更大。

    乍听起来,三个问题都如天方夜谭。然而受惠于神经科学和认知科学的发展,也得益于自托勒密时便兴起的视错觉研究,看似无能为力的问题亦都有了解法。

    这都要从人的视觉机制说起。

    1)人眼的视觉机制

    人眼是如何看到事物的?不妨以照相机作喻:人眼是凸透镜成像,晶状体是照相机镜头,视网膜是照相机胶片。

    图三,图片来自网络

    物体光线从瞳孔进入眼睛,经由晶状体(凸透镜)折射,最终形成在视网膜上的倒立实像,经由人脑的算法自行复为正位。

    凸透镜的成像原理,初中时都学过,透镜把平行光线汇聚于一点,形成实像/虚像。近大远小实际上也是因为凸透镜的作用(经过轴心的光线入射角减小,所以高度增加)。

    图四,表格来自均一教育

    如图所示,焦距固定,物距不同时,成像的距离也有所不同。当物距小于焦距时,物体成虚像,也就是放大镜的功效。

    图五,图像来自百度百科

    2)凸透镜的作用

    运用凸透镜成像的规律,把光映入眼中的其中两个难题就可以解了。根据上图可得,当物体放置到透镜的一倍焦距内,便会在一倍焦距到二倍焦距之间形成一道正立放大的虚像。

    什么是虚像呢?即物体的光经过反射而映入眼中的,光与光之间不能形成交汇,但人眼下意识觉得光是直线传播的,所以会自动反向延长光线,使其交汇于一点,从而形成虚像。

    图六,图片来自光学影像与镜头

    VR 的原理和人眼一样,利用了凸透镜的作用。通过在人眼和屏幕间放置一块凸透镜,屏幕放置于透镜的一倍焦距内,使其在 2 倍焦距出形成了屏幕内容的虚像,根据 B 站 Up 主消失的模因推算,大概是 280 英寸的巨幕大屏。

    图七,图片来自 Up 主消失的模因视频截图

    由于凸透镜的作用,屏幕的成像距离也被调整,如 Quest 2 的像距在 1.3 m,已经能够满足人眼的观看范围了。

    不过,由图六可知,人眼与透镜、透镜与屏幕间,都需要保持合适的距离。如果透镜离人眼过近,像距也会被拉近,从而不能满足人眼的观看范围。如果透镜过远(仍要小于焦点),那整个设备的体积又会增大。

    透镜的距离也影响着 FOV 的大小。这里要再稍微解释下 FOV 的概念,一般我们所谈论的都是水平 FOV(field of view),是指屏幕被透镜折射,最顶部和最底部的两道光线射入人眼所形成的夹角。

    FOV 越大,人在屏幕中所看到的虚拟视野就越大。但问题在于,想要增加 FOV,要么把透镜后移,让其更靠近人眼,或者增加镜片的厚度。透镜后移,会导致像距被拉近,不能满足人眼的观看需求;增加镜片厚度,又会导致设备整体过重,并且同样的,像距依然会有问题。

    实际上,FOV 并不是越大越好。现实世界中,人正常聚焦的视野范围一般在 110°,如果物体出现在 110° 外,人一般要转头去看,增加疲劳度。所以,只要保证 FOV 在 110° 左右,其实也就够了。

    另一方面,透镜所呈现的放大版屏幕,实际上是原来屏幕的投射,屏幕分辨率是没有变的,FOV 越大,对屏幕分辨率要求就越高,差的屏幕甚至能看到像素点。从工程学而言,找到 FOV 同屏幕、透镜厚度、设备整体尺寸的平衡关系,才是实际的难点。

    3)透镜的演变

    在实际工程中,透镜的演变,或者说 VR 中光学方案的演变,大体可以从非球面镜片到菲涅尔镜片,再到 pancake 折叠光路。

    图八,图片来自网络

    一般的球面镜片,镜面各处曲率相同,所以光从镜片折射出来,会聚焦在不同的位置,也因此导致模糊和外围失真的情况,这种现象被称为球面像差;非球面镜片就是在球面镜片的基础上,改变表面的曲率,使得折射出来的光能够汇聚在一点上。这样,球面像差的问题就能得到缓解或消除;但非球面镜片有个问题,它太重了。

    于是菲涅尔镜片被搬到了 VR 中,简单来说,透镜的主要作用是为了折射光线,而透镜中存在一部分区域不折射光线,既然如此,直接把这部分拿掉,也完全不影响透镜的功能。菲涅尔凭着这样的方式,减了一波重量。

    但菲涅尔镜头各处曲率不变,焦距无法进一步被压缩,整体仍然较重,VR 眼睛也无法做得轻薄;同时由于曲面不连续,成像精度受限。非球面和菲涅尔镜头,都是采用平行光路的方案(光从透镜中透出,进入人眼)。想要再轻薄,目前最佳的实践是采用折叠光路(拉近焦距,通过多重反射进入人眼,既缩小焦距又保证成像)。

    pancake 的名字也反映出了它的结构,就是像饼干一样的四层镜片(各家有不同,如果用 micro led 会有五层),它的光学原理不必深究(反正也搞不懂),只需记住它的解决方案是通过折叠光路使得焦距近一步被压缩。

    焦距被压缩,其实不单改变厚度,也改变了视场角,近大远小,焦距变短,那视场角就会变大。当然这只是理论上的(理论上限 pancake 可达 200°),现实中由于工艺的问题,pancake 方案的视场角还没有菲涅尔广,在 60 – 90° 之间,而菲涅尔可以达到 100° 左右,当然,离人眼的 120° 还有一段距离。

    当然,pancake 也有自己的问题,因为有两次反射的原因,理论上 pancake 的入射光线亮度只有一开始的 25%,这就要求光源本身得很亮。

    同时由于多路反射,容易出现鬼影的情况,对工艺要求很高。但这些都是可解决的问题,平行光路有它的上限,如果要塑造沉浸感 + 便携的设备,折叠光路还是更好的方案。

    由于 pancake 「损光」的特性,屏幕亮度就显得尤为重要,目前主流的搭配仍然是 Fast LCD + Mini LED 背光+ Pancake,但更理想的方式是 Micro OLED + Pancake,相比于传统 LCD 的 500 尼特亮度,Micro OLED 的亮度可达 1000-6000 尼特。

    另外值得一提的是,既然是折射,画面一定会失真。现行的光学方案都是先让屏幕中显示的画面先失真(桶形畸变),再通过透镜折射恢复正常(透镜会通过枕形畸变将桶形畸变的图像恢复正常)。

    图九,图片来自 POMEAS

    4)沉浸感的实现

    如果说凸透镜解决了近眼成像和视觉放大的问题,那么还留存着一个尚待解决的问题:深度感知。这也是实现 VR 沉浸感的关键。

    解决方案其实再简单不过,只需在透镜前放置两块屏幕(或一块屏幕隔成两块),分别呈现同一图像的不同成像角度即可。

    图十,图片来自网络

    人眼是个非常神奇的存在,本质上当我们看向三维物体时,左右眼看到的其实是同一物体的不同角度的平面成像图像。当两种不同角度的图片到达人脑后,人脑内置的视觉算法可以自动将两张平面图片合成一张立体图片。

    VR 成像,由于所有的内容都只呈现在屏幕上,而屏幕是平面的,所以无法像真实的三维物体一样,由于视差(两眼看到的角度差异)的存在而感受到立体感。所以,一不做二不休,干脆在两块屏幕上呈现同一物体的不同成像画面,利用大脑的自动合成功能,模拟立体感知。

    虽然,双目视差的机制让 VR 眼镜能够模拟三维影像的立体感。但沉浸感除了立体,还有对于深度信息的感知。简言之,怎么区分物体离我们的距离。

    5)远近感知

    人眼感知世界的方式,主要依靠四种机制:

    1. 双目汇聚(vergence)
    2. 双目视差
    3. 单眼调节(Accommodation)
    4. 大脑补充

    其中,双目汇聚、单眼汇聚和大脑补充都能帮我们感知到世界的远近信息。在日常感知中,大脑补充其实是最为常见的体验,因为我们在观看视频时,视频画面本身是 2D 的,可我们却能从中判断出物体的远近,很重要的原因就是大脑补充。

    大脑补充,简言之即人脑根据经验的总结,通过一些画面线索进行的距离判断,比如近大远小(学名仿射)、遮挡关系(近处遮挡远处)、光照阴影、纹理差异、先验知识(比如飞机和风筝同样大,但飞机比风筝远)。这些知识学过画画的同学不会陌生。

    双目汇聚(vergence),简单理解,是指两只眼睛看向同一物体,这个过程需要转动眼球肌肉,使得双眼聚焦同一物体。当物体靠近或远离眼睛时,汇聚角(图中所示的夹角)也会变大缩小,同时眼部肌肉会收缩或放松。也即,通过感知汇聚角的范围和睫状肌的紧张程度,人眼可以分辨物体的远近。

    图十一,图片来自 Relative contributions to vergence eye movements of two binocular cues for motion-in-depth

    单眼调节(Accommodation):眼睛依靠睫状肌进行聚焦控制,越靠近人眼的物体,成像会越模糊,通过模糊程度判断物体的远近。当眼睛聚焦在近处物体时,远处物体会模糊;相反,当聚焦在远处物体时,近处物体会模糊。

    单眼汇聚只依靠单眼即可判断,一个典型的实验是:闭上一只眼睛,左右手分别竖起一只手指,与眼睛呈一条直线。当眼睛聚焦于近处手指时,远处手指模糊;反之亦然。本质上,单眼汇聚和双目汇聚是一体两面的存在,前者告诉大脑物体离人眼的绝对距离,后者告诉大脑双眼视线形成的绝对角度,两者都是在物理上可测量的。

    VR 中的远近信息传递,主要运用了大脑补充,但因为屏幕的距离是固定的,透镜的距离也是固定的(pancake 之前),所以双目汇聚和单眼汇聚的信息是缺失的,而这也直接导致了所谓的 VAC 问题。

    在真实世界中,人眼的汇聚距离和调节距离应该是一致的(观看远处物体时,眼睛聚焦到远处;观看近处物体时,眼睛聚焦到近处),反映在物理层面则是控制眼球转动的眼部肌肉和控制聚焦的睫状肌同步运动 。但 VR 中,由于像距是固定的,因此无论观看画面中的远处或近处物体,眼睛都只能聚焦到屏幕上,这时,双眼肌肉与睫状肌便不再同步了。

    图十二,来自维基百科

    一般而言,有两种方式解决 VAC 问题。一种是光场技术, VAC 的本质是由于屏幕不含深度信息,而采用脑补的方式进行模拟,从而导致了眼部肌肉与睫状肌的不协调。

    那如果让屏幕发出的光,一开始就不相同(比如画面中的远景发 A 光,近景发 B 光),人眼就可以获得深度信息,问题就得以解决了。另一种方式是通过可变焦距 + 眼动追踪解决(第三部分会详述)。

    眼动追踪确定用户的注意焦点,通过可变焦距实时改变焦点处的焦距,进而改变成像距离,使得会聚距离与调节距离保持一致。

    目前光场技术还不成熟,而业内已采用的 pancake 方案可以实现多重变焦,有望在第二种方案上实现突破。

    三、世界应该如何与我们交互?

    以上我们所讨论的仅仅是静态的呈现,而真实世界是动态的,我们每时每刻都在与世界本身交互。因此,尽管静态的 VR 世界已经如此庞大,我们仍然不能停下来,驻足欣赏此刻的成果,更艰难的事情在于从照片到影像的跃升。请继续保持耐心。

    1. 空间定位

    试想,当我们观察现实世界上,我们会移动,转头,于是我们看到事物的不同角度和大小。当我们靠近,声音变强,画面变大;当我们远离,声音减弱,画面变小;当我们围绕物体,则看到它的侧面。正是诗中所言:横看成岭侧成峰,远近高低各不同。

    有一个专业术语,DOF(degrees of freedom),用于衡量人活动的尺度。如果把空间分为 X,Y,Z 轴,则一共可以包括六种移动方式:沿 X、Y、Z 平移;沿 X、Y、Z 旋转。

    所谓的 6DOF,其实便是指包含这六种情况的活动类型。

    图十三,图片来自网络

    VR 空间中,本质上所有的信息都只是投射在眼前两块屏幕上的平面信息,远近、侧面并不存在。所以它其实是模拟用户发生相应活动后的视觉呈现效果,直接投射如人眼。

    比如当人靠近某个物体,屏幕画面会放大;转头就能观察整个空间的全景,不是用户真的来到另一片空间,而是算法根据用户的当前活动判断,并进行实时渲染。

    目前的算法,主要是以头盔的活动情况为标准,通过 IMU 和追踪摄像头进行空间定位。空间定位是 VR 的核心之一,因此有必要具体阐述。

    1)IMU

    IMU,全称为 Inertial Measurement Unit,翻译为惯性测量单元,一般指测量物体角速率和加速度的装置。我们经常看到,一个名词 MEMS 与 IMU 伴随出现。

    MEMS 全称 Microelectromechanical Systems,翻译为微机电系统传感器,指内部结构在微米级别的传感器。

    MEMS 有很多种,比如 MEMS 加速度计、MEMS 陀螺仪。

    MEMS 和 IMU 是两个独立的概念,并不存在包含关系,不过两者存在交集。比如上面提到的 MEMS 加速度计 和 MEMS 陀螺仪,既属于 MEMS ,也属于 IMU。

    一般而言,IMU 又包含三种传感器:加速度计、陀螺仪和磁力计。

    1. 加速度计: 一般为三轴加速度计,检测物体在 X、Y、Z 三轴上的加速度,经过积分换算,从而确定位移距离(实际上这样确定位移不太准,加速度计算位移是靠积分换算,本身就有误差,多次积分会导致误差累计,最终的位移距离会出现漂移)。
    2. 陀螺仪: 一般为三轴陀螺仪,检测物体在 X、Y、Z 三轴上的角速度,根据角速度推算物体当前的角度。
    3. 磁力计:  又称电子罗盘,一般为三轴磁力计,检测物体在 X、Y、Z 上的磁分量,计算得到最终的磁向量,经过算法纠偏,最终得到地磁北的方向,从而确定物体的所在方向。

    市面上的一些叫法,如六轴陀螺仪,其实是三轴加速度计+三轴陀螺仪;九轴陀螺仪,则是三轴加速度+三轴陀螺仪+三轴磁力计;十轴陀螺仪,是在九轴陀螺仪的基础上再加一个气压传感器,获得海拔高度,从而获得物体的高度。

    在 VR 的应用场景中,一般采用九轴陀螺仪,实现 3DOF 的检测(Roll 、Picth、Yaw 三种动作,见图十二)。

    但光靠 IMU 无法检测到平移的动作(沿三轴平移),一般还需要辅助摄像头等其他设备。

    2)追踪摄像头

    这里要谈到技术路径的演变,最早的平移定位,采用的是外部定位方式,直到一体机的风潮愈烈和 SLAM(空间定位算法)的发展,才渐渐转为内部定位。不过在一些要求超高精度的环境下(比如虚拟场馆或动捕),都还是采用外部定位的方法。

    技术路径的演变,从 Outside-in 到 Inside-out。

    本质的区别,Outside-in 是在外界空间中有一套锚定的装置,构建一个相对坐标系。通过装置与 VR 设备的互动,检测头盔和手柄的当前位置。在由外而内的系统中,多个固定的外部摄像头用于跟踪头戴显示设备的姿势(3D位置和3D方向)。外部摄像头跟踪位于头戴显示设备和控制器(如果有)上的一组参考点。

    Inside-out,是依靠光学追踪,在 VR 头盔上安置摄像头,让设备自己检测当前外部环境的变化,再经过 SLAM 算法(Simultaneous localization and mapping)计算出当前的空间位置。

    Outside-in

    Outside-in 路径中,最有名的有两种技术方向:- Cculus 的 Constellation 红外摄像头定位系统;- HTC 的 Lighthouse 定位;先说 Constellation,Oculus 的头盔和手柄上都布满了红外传感,以固定模式闪烁。

    房间中布置了红外摄像机,摄像机以特定频率拍摄头盔和手柄,由此得到一组图片,并得到这些红外的点的特定坐标,由于头盔和手柄的三维模型是已知的,通过 Pnp 求解(可以理解为一种复杂的数学计算)能够得到点的 6 DoF(加上 IMU 后)。

    图十四,图片来自 GamesBeat

    至于用红外,则因红外波可以规避大部分颜色的影响,不会出现误判。但红外容易被遮挡,所以在空间中要布置多台红外摄像机,才能准确判断三维信息。实际上,Optitrack 和 Zero Latency 用的都是同样的方案,只不过 Zero Latency 用的是可见光,更容易受到颜色等噪声干扰。

    主动式红外光( Constellation)主要受到摄像头精度(因为根据图像判断)和光学算法的影响,同时价格昂贵,布置也比较麻烦,在移动浪潮下不太适用了。

    另一种则是 Lighthouse 定位,室内安置了两台激光发射器,安放在房间对角,而在头显和手柄上有 70 多个光敏传感器。激光发射器从水平和垂直方向扫射空间,发射器为 0 度时,开始计时,激光到光敏传感器时,光敏传感器记录到达时间。由于发射器的旋转速度是已知的,所以根据时间和转速能够计算光敏传感器相对发射器的角度,一次扫描完成后,就可以进行空间定位。

    图十五,图片来自 HTC VIVE LIGHTHOUSE CHAPERONE TRACKING SYSTEM EXPLAINED 视频截图

    相比红外,Lighthouse 的方法方便很多,没有那么多光学计算,误差和延时都有所保证,可以达到 20ms 以内。但激光扫描区域一般在 5 * 5 * 2 m 范围内,如果要扩大,需要多个灯塔,这时候多空间的融合又会出现算法问题。为了实现定位,光敏传感器需要区分不同来源的激光,而光塔过多也会相互干扰。

    另外,Lighthouse 在安装和成本上仍然要比 inside-out 高,但延时性低,精度高,在需要特别拟真的环境仍然需要这种技术。

    Inside-out

    Inside-out,主要通过摄像头拍摄周围的画面,通过图像识别判断房间景物的一些特征点,通过与上一次拍摄时的特征点位置进行对比,从而得到特征点的位移。与此同时借助 IMU 得到辅助数据,通过算法得到头显的位移情况。同样,在手柄上存在一些小白点,摄像头也通过捕捉小白点的位移判断手柄的变化情况。

    因为是可见光识别,所以房间内得保持一定的亮度,不能关灯。

    此外,因为依靠摄像头识别外部的标记点,如果角度识别精读差异 1 度,整个距离可能偏移几厘米,Inside-out 对精度要求十分之高。又由于需要计算图像显示,所以它的延时没有办法像 Lighthouse 一样低。

    Inside-out 主要依靠 VGA 摄像头和深度识别摄像头进行 3D 空间定位。VGA 摄像头,配合深度识别摄像头,主要用来做头部空间定位和手势识别。VGA 是指的 VGA 格式的分辨率,640X480 ,黑白。深度识别摄像头,主要用来识别物体的距离(实际上也可以识别骨骼点,但不需要),主要有三种技术:

    1. TOF:原理是传感器发出经调制的近红外光,遇物体后反射,通过计算光线发射和反射时间差或相位差来换算被拍摄物体的距离。
    2. 单目结构光:该技术将编码的光栅或线光源等投射到被测物上,根据它们产生的畸变来解调出被测物的三维信息。
    3. 双目结构光:和人眼一样用两个普通摄像头以视差的方式来计算被测物距离。

    2. 面部、眼动和手势追踪

    有了空间定位,VR 可以实时渲染出对应的画面结果。然而人不止和世界交互,也要和人交互。试想,如果我们想要在虚拟空间中同家人,亲朋好友交流,那么我们势必需要看到他们的神情,这其中最重要的便是面部表情和眼神。

    图十六,图片来自 MARK ZUCKERBERG: FIRST INTERVIEW IN THE METAVERSE | LEX FRIDMAN PODCAST 视频截图,图为 ZUCKERBERG 和 FRIDMAN 在 VR 世界中的面部重建

    1)面部识别

    面部识别主要靠摄像头,放在头显内部,追踪如额头、下巴、脸颊的变化情况,追踪原理和空间定位差别不大。一般可以用在如下的场景下:

    • 表情同步
    • 面部重建
    • 疲劳识别
    • 情绪识别
    • 用户身份识别

    面部识别存在的问题是,当戴上头显时,人脸 60% 的地方是被遮住的。Magic Leap 的想法是,虽然有的地方被遮住,但可以根据周围未被遮住的肌肉变化来推测。当然,越多的摄像头还是更有助于捕捉真实表情。

    Oculus 在训练面部识别时,用了 9 颗摄像头,只是到了消费级,才用 3 颗摄像头并配合 9 颗摄像头训练出来的算法进行面部追踪。

    2)眼动追踪

    眼部追踪主要靠眼动追踪摄像头。眼动追踪的原理是利用光摄入瞳孔反射到角膜的原理,测算角膜和瞳孔的距离来判断眼动的情况。VR 的眼部周围有一圈红外光 LED 灯,向眼睛发射红外光,光从瞳孔反射到角膜上,摄像头拍摄图像,判断瞳孔和角膜的位置,从而判断眼动的情况。

    眼动追踪带来的益处很多,除了眼神与渲染的人物同步,最熟知的是眼动交互,和手势交互一起可以带来自然的交互体验。另一个重要的好处在于,人类的视力在整个视野中并不均匀。中央凹是视网膜的中心区域,视力最好。

    在中央凹区域外,视力逐渐下降到视网膜边缘。这样,实际上画面的渲染只需要关注到视线聚焦处,这样可以降低计算渲染成本。此外,有了眼动追踪后,VR 的瞳距可以根据佩戴者的身份自动调节;在运营层面,可以根据眼睛聚焦情况进行数据分析。

    还有一个隐藏的好处,主要是体验层面。VR 中的 3D 成像效果,是通过向每只眼睛显示一个独特的 2D 图像来创造 3D 感觉,其中每个图像的渲染略有不同,以产生双眼视差,从而带来 3D 效果。

    但是,用户眼睛和图像之间的距离(也即显示屏与人眼的距离)是固定的,所以实际上会导致眩晕问题,也就是所谓的视觉汇聚调节冲突(VAC)。通过眼动追踪 + 变焦显示器,VAC 可以得到缓解。

    变焦显示器使用眼动追踪来主动跟踪眼睛的会聚,并使用具有可变焦距的聚焦元件来匹配眼睛的会聚。至于变焦技术,主要是机械式变焦(电动齿轮,改变镜头和物体、视线焦点的距离)。

    3)手势识别

    有了面部表情和眼动追踪外,我们还需要手势识别,以进一步与虚拟世界交互,比如拾取、点击,或只是简单的 say hello。手势识别所用的摄像头和空间定义一致,都是 VGA 摄像头,识别原理类似。

    手势识别主要的难点在于:一般摄像头的视场角都讲究水平,垂直视场角的高度不够,所以手跑到摄像头的视线范围之外就很难办。而在人类大部分的自然任务中,手都是处于下视野的范围,手势追踪的实际难度会很大。

    另外,根据对照实验,采用手势追踪的任务效率,会低于直接用手部控制器的方式,一是因为延时,二是因为纯手势交互缺乏触觉提示和反馈,而人需要后两者以定位操作对象。Apple vision Pro 通过手眼融合的方式,提供了一种视觉反馈,变相弥补了下纯手势交互的问题。

    此外,它还配了六颗摄像头(一般是 4 颗),其中两颗专门垂直向下以捕捉下视野的手。

    4)全彩透视

    如果说空间定位和面部、眼动追踪是与虚拟世界交互。那么 VR 很快有了一个更大的野心:升级成 XR,捕捉现实世界的动态。全彩透视,使用 VST RGB 摄像头,用于捕捉带着 VR 头盔的用户所看到的真实景象。VST 指 vedio see through,RGB 是图片颜色格式。

    VST 原先都是黑白的,用来看周围空间,现在成了 MR 的入门券。无心插柳柳成荫,原先是为了让用户能够看到周围的真实空间,以确定活动范围的透视,却悄然一变,变成了与 AR 类似的功能。

    不过囿于成本,VST 也没有全部采用全彩。如 Quest pro 用 VST,两颗黑白镜头建场景,一颗 RGB 摄像头用来补色,不过现在也出现了双目的 RGB,体验越来越好。

    VST 要注意三点:

    1. 清晰度:简言之就是看到的画面要和现实中一模一样。
    2. 延时性:要低,不然画面和动作不一致,用户会晕。
    3. 视角偏差:摄像头的位置和人眼的位置不一致,所以画面容易产生视角偏差,长时间使用可能出现视觉伪影,有点像水里折射的情况;所以要提前设置算法矫正。

    其实,虽然 VR 推出了全彩透视的功能,但并不意味着 VST 一定要放在一体机上,那样相比于 AR 并没有太大的优势。如果拿 PC 和手机类比 VR 和 AR,VR 是 PC 的延伸,承载的是重活,而 AR 更擅长可移动的小场景。VR 在肉眼可见的未来,很难达到出街的可能,VST 的作用仅仅是家庭活动,例如游戏、音乐、绘画。

    图十七,Hauntify Mixed Reality 让鬼出现在家中真实房间

    VR 的 VST 中,真实世界的元素更多成为一种背景,增加活动本身的乐趣,但却不是主体。试想,如果 VST 和 VR 主机分离,VST 作为 VR 的配件,可以配置到工厂、医院,通过无线传输实时渲染,那是否能够真正实现数字孪生?而 VR 也将真正闯入工业级的应用。

    四、把大象塞进冰箱的最后一步

    旅程到这里,其实已经结束了。VR 的核心就是光学方案和空间定位,以及基于此的渲染和定位算法。不过,为了方便读者后续阅读某些拆解报告时,对上述内容外的一些概念不太了解,特在最后一章附上相关的名词解释。

    1. 头盔、手柄

    • 接近传感器: VR 头盔的接近传感器一般用红外,由一个红外发射管和一个红外接收管组成。红外发射管会发射一调制红外光信号,该信号在遇到障碍物后被反射回来,接收管通过接收该反射信号并根据反射信号的强度来判断障碍物的远近。
    • 玻纤: 头盔所用材料,耐热、绝缘、超轻。
    • 霍尔芯片: 霍尔IC是将霍尔元件与运算放大器组为一体的产品。霍尔元件一般用在手柄上,用于检测扳机、侧键是否按下;霍尔元件从元件本身获得的电压非常小,因此一般情况下需要配置运算放大器等的放大电路。
    • 马达驱动芯片: 马达即电机,控制马达的正转、反转、刹车等,用于控制震动马达。
    • 线性马达: 通电的线圈在磁场中受到洛伦兹力作用,带着动子沿固定方向往复运动产生振感,是一种能将电能直接转换成直线运动机械能; 线性马达的振动频率和波形均可编程,能根据使用场景,让马达做出不同方向、时间和强度的振动反馈。
    • X 轴线性马达: 动子沿 X 轴方向移动的马达,可以带来前、后、左、右四个方向的震动感觉(X、Y 轴)。
    • Z 轴线性马达: 动子沿 Z 轴方向移动(x,y,z 轴),带来上、下的震感。

    手机上一般配 X 轴,因为手机薄,Z 轴行程短,效果不好;手柄上就不是了,双关齐下;早期还有一种转子马达,利用电磁感应,用电流导致的磁场驱动转子旋转而产生振动。这种方法的问题是延时,缺乏方向性,震动的手感不好。

    2. 计算、通信、存储

    • IC: Integrated Circuit 集成电路芯片的简称。集成电路芯片是一种电子元件,是将多个电子元件(如晶体管、电容、电阻等)集成在一起,通过半导体制造工艺制成的电路。集成电路芯片有很多类型,比如存储器芯片、处理器芯片等。
    • CPU: Central Processing Unit ,中央处理单元,主要用于计算机指令的逻辑计算和输入、输出控制。
    • DRAM: Dynamic Random Access Memory,动态随机存取存储器,RAM 的一种,用于数据的临时存储,主要用于存储运行中的程序和数据。
    • LPDDR5: DRAM 的一种,全称Low Power Double Data Rate SDRAM,其中 SDRAM 是 Synchronous Dynamic Random Access Memory 的缩写,表示同步动态随机存取存储器。LPDDR5 的读取速度可以达到 6400MHz,表示内存每秒钟可以进行6400万次数据读写。
    • ROM: Read Only Memory,只读存储器,用于永久保存数据,也即我们一般意义上的内存。
    • 闪存 UFS 3.1: Universal Flash Storage, 读写速度可以达到几百MB/s或甚至上千MB/s,一般插 U 盘在电脑上,数据从 U 盘上的读取、写入就看闪存的能力。
    • MCU: Microcontroller Unit, 微控制器单元,集成了处理器核心(CPU)、存储器(RAM)和输入/输出接口等功能。
    • SoC: System on Chip, 系统级芯片,将系统的大部分或全部组件集成在一块芯片上,通常包括处理器、内存、输入/输出接口、模拟电路、数字电路和其他外围设备等。SoC 可以简单理解为 MCU + 特定功能的外设集成。
    • FEM: Front-end Modules,前端模块,主要用于射频信号的发送放大、接收放大、滤波等,用在手柄、头盔(2.4 G、5G 射频)的通信。
    • FPGA: Field Programmable Gate Array,可编程的集成电路,优势是高速、实时处理大量数据,用于对视觉画面、传感器数据等的并行处理。

    3. 电源管理

    • 钽电容: 电容器,主要用来存储电荷。
    • 电压电平芯片: 解决不同电压电平之间兼容性问题的集成电路芯片,电压电平芯片可以将输入信号的电压范围转换为输出信号的电压范围。电平电压芯片将VR头显与计算机或游戏主机之间的信号进行转换,以确保它们能够正常地进行数据传输和通信。
    • 稳压芯片: 将输入电压转换为稳定输出电压的集成电路芯片。
    • 升压芯片: 将输入电压升高到更高电压的集成电路芯片,升压芯片也有使用运放的方案。
    • 运算放大器: Operational Amplifier,简称Op-Amp,可以将微弱的模拟信号放大到适合后续处理的范围,也放大输入之间的电压差;VR 中作为 LED 驱动或者其他驱动的放大器;运放也有用在升压芯片的方案。
    • OTG 扩展供: On-The-Go,USB 2.0 规范的补充,供电是指在使用OTG 功能时,主机设备(比如电脑)为连接的外设(比如 VR 头显)提供电源供应。
    • 电源管理芯片: 顾名思义,对电源起到管理作用,具体包括。
    • 电源变换:将输入电源的电压和电流转换为适合系统需求的电压和电流。
    • 电源分配:将电能分配给不同的系统组件,以满足其功耗需求。
    • 电源检测:监测电池电量、充电状态和系统负载等信息,以提供电源管理的智能化控制。
    • 其他电能管理功能:如电池保护、温度监测和功率管理等。

    五、后记

    这应该是我自《张小龙 22 年》后写的最长的文章了,无论是字数还是时间。写长文不容易,记得当时写张小龙的时候,大概花了一个星期,虽然在微信上没发出多久就被腾讯封了,但在 pmcaff 上还有留存(链接放在了参考中),并得到了池建强老师的推荐,也算满意了。

    写这篇文章,比写人物要困难多了,太多的专业术语,以及技术理解。原先我以为自己懂了的概念,其实真正串起来,又延伸出许多枝蔓,又一点点去查。

    好在有 perplexity 的帮助,简化了我的一些工作量。不过写作的乐趣正在于此,它是一座迷宫,有时只想理解一个概念,又牵扯到另一个概念,概念与概念之间的关系又引发了新的着迷。

    有一些很不错的信息源在此过程中也被发现,例如雷锋网的 VR 专题、知乎上胡痴儿的早年回答,以及 B 站 Up 主消失的模因的精彩视频。可惜,前两者已经不再更新了。

    当然,最惊喜的是终于发现了一本介绍 VR 全貌的书籍,《The VR Book》,虽然成书于 2016 年,但作者功力深厚,仍然不失为理解 VR 的最佳材料之一。

    这篇文章,大概可以 2 个月以来,对 VR 的研究结果,是给自己一个交代。里面一定有诸多问题,受限于自己当前的见识,有所偏颇,但第一步既已踏出,便可以在后续的学习道路上增删改查,可谓是写完后最大的收获了。我想,在消费电子业无聊的状态下,有一件有意思的事物可以研究,便很快慰了。

    参考:

    1. 人类的视觉增强探索史:https://www.uisdc.com/evolution-of-ar-and-v
    2. XR 设备发展史:https://www.scaruffi.com/memejam/vr.html
    3. Philco HeadSight 介绍:https://www.virtual-reality-shop.co.uk/philco-headsight-1961/
    4. 凸透镜成像原理:https://www.junyiacademy.org/junyi-science/science-high/science-high-history/s5p-99/junyi-geometric-optics/v/F-qVxGLJT1Y
    5. 了解 AR/VR 的光学原理:https://imgtec.eetrend.com/blog/2022/100557077.html
    6. VR视场角真的是越大越好吗?- 大朋工程师的文章 – 知乎 https://zhuanlan.zhihu.com/p/22252592
    7. 重新认识鱼眼镜头:https://www.bilibili.com/video/BV1TL41117ti/?spm_id_from=333.1007.top_right_bar_window_history.content.click;vd_source=7cf1f568229c6f5b4a7c23f5a2e85cbc
    8. VR沉浸感的奥秘,人眼如何通过双目视差硬解深度信:https://www.bilibili.com/video/BV11A411m7Sw/?share_source=copy_web;vd_source=c7e29439c97151c3755a46ccd4c8160a
    9. 如何充分利用视觉系统对深度的感知从而营造更强的立体感与深度感?:https://www.zhihu.com/question/46552885
    10. 光场与人眼立体成像机理:http://vr.sina.cn/news/2018-10-24/detail-ifxeuwws7707633.d.html
    11. 维基百科 – Vergence-accommodation conflict:https://en.wikipedia.org/wiki/Vergence-accommodation_conflict
    12. MEMS传感器1:3轴加速度计工作原理揭秘,与这些有关:https://www.bilibili.com/video/BV1NJ41117B8/?share_source=copy_web;vd_source=c7e29439c97151c3755a46ccd4c8160a
    13. 深度解析 HTC Vive 的 Lighthouse 室内定位技术 – 虎嗅网:https://www.huxiu.com/article/142795.html
    14. Lighthouse 激光定位技术开源了,但不是 Valve 做的 | 雷峰网:https://www.leiphone.com/category/arvr/nu6Zln6hQTdMqSsy.html
    15. HTC Vive Lighthouse Chaperone tracking system Explained – YouTube:https://www.youtube.com/watch?v=J54dotTt7k0
    16. How the Vive Lighthouse Works – YouTube:https://www.youtube.com/watch?v=oqPaaMR4kY4
    17. Hypereal 突然开源?背后所涉的重磅信息都在这里了 | 爱范儿:https://www.ifanr.com/786928
    18. 目前最强的 VR 定位技术,HTC 和 OptiTrack 是如何做到的?:https://wapbaike.baidu.com/tashuo/browse/content?id=2e7f4fcdd19a68101416efc6
    19. 深度干货:详解基于视觉+惯性传感器的空间定位方法:https://www.leiphone.com/category/arvr/taExbGMOaYfbnnMw.html
    20. VR的空间定位技术是如何实现的?- 知乎:https://www.zhihu.com/question/46422259
    21. VR空间定位全解:如何在虚拟世界中行走?:https://www.leiphone.com/special/216/201607/577cd787225d6.html
    22. 「面部动作捕捉」是一项什么技术?主要应用于哪些场景?- 渲云渲染的回答 – 知乎:https://www.zhihu.com/question/321811525/answer/675319985
    23. 【VR速递】OculusQuest面部识别;眼球追踪的研发之路 – 载入圈VR的文章 – 知乎:https://zhuanlan.zhihu.com/p/410829378
    24. 面部表情追踪技术在 VR 设备中的发展研究:https://m.fx361.com/news/2019/0106/6266425.html
    25. Eye Tracking in Virtual Reality: a Broad Review of Applications and Challenges:https://link.springer.com/article/10.1007/s10055-022-00738-z
    26. What is VR Eye Tracking? [And How Does it Work?]:https://imotions.com/blog/learning/best-practice/vr-eye-tracking/
    27. Hand Tracking for Immersive Virtual Reality: Opportunities and Challenges:https://www.frontiersin.org/articles/10.3389/frvir.2021.728461/full
    28. Quest手势识别功能评测:https://mp.ofweek.com/vr/a645693029046
    29. Meta RGB透视VR研究:摄像头距离可调、分辨率720p:https://zhuanlan.zhihu.com/p/569886369
    30. 从典型案例看VST MR游戏的设计技巧:https://www.vrtuoluo.cn/536138.html
    31. 红外 ToF 技术将大幅提升接近感应传感器的性能及可靠性:https://mouser.eetrend.com/content/2020/100048606.html
    32. 何谓霍尔IC?:https://www.ablic.com/cn/semicon/products/sensor/magnetism-sensor-ic/intro/
    33. 转子马达、X轴和Z轴线性马达有啥差别?这篇文章总算说明白了!:https://www.cfan.com.cn/2020/0729/134125.shtml
    34. MEMS mic之Amic(一)_麦克风thdpn是什么不良代码?:https://blog.csdn.net/weixin_44316365/article/details/124838502
    35. EPOS 波束成形麦克风阵列技术优化您的会议体验.pdf
    36. 常用的音频功放芯片-电子工程世界:http://news.eeworld.com.cn/qrs/ic628769.html
    37. 瑞苏盈科为VR行业提供FPGA核心板解决方案:https://xilinx.eetrend.com/content/2023/100572176.html
    38. 同创国芯窦祥峰演讲实录:VR的FPGA应用分析:https://cloud.tencent.com/developer/article/1137422
    39. Perplexity:https://www.perplexity.ai/
    40. 张小龙的 22 年和微信的 8 年:https://xie.infoq.cn/article/a70d189eaa18334868f8b2a45
  • 生活中哪些体验很好,但容易被忽略的小设计

    产品设计 2023-11-16

    在生活中,我们能够看到各种精美的小设计,但就是这样的小设计会经常被我们忽略。生活中哪些体验很好,但容易被忽略的小设计? 本文总结了其中的11个案例,与大家分享。

    工作后的我们,很多时候都是过着两点一线的生活,单调重复的生活渐渐冲淡了对世界的热情。

    不再像小时候那样,会拼命追着大人问为什么?

    比如:

    • 白天星星去哪了呀?
    • 蚂蚁下雨不打伞会淋湿吗?
    • 我们为什么要睡觉呀?
    • ……

    诸如此类的问题,好像可以问个没完没了。

    当我们长大了,眼里只有工作、赚钱,渐渐的对身边的事物都忽视了。

    • 比如:窗台的花开了许久都没发现,等发现的时候只看到一地的残枝败叶;
    • 比如:楼下的门卫老爷爷不知道从什么时候,换成了一个每天会对你喊早安的小伙子;
    • 比如:妈妈鬓角旁的白发又增长了几根……

    这些可能是大部分人生活的真实写照,真实却又心塞。前些年一直是这种状态,这两年才开始有所改观,开始学着用心看和感受身边的事物。

    渐渐的,生活有了一些改变。很多有趣的事物被记录下来了,才突然发现,生活还是那种生活,只是用心去感受以后,总会发现一些不一样的东西(也可能是以前一直都有但是没有察觉到的),生活变得不再那么单调,也开始有趣、好玩起来。

    比如这阵子就发现了很多以前生活中被忽视的精美小设计,接下来挑出其中11个来分享,希望能给到大家一些启发。

    01 地铁动画提醒

    发生场景:深圳地铁,出站时候的提示指引。

    (↑ 深圳地铁10号线指引图)

    那这个面板中的动画和声音提示好在哪里呢?主要是以下几点:

    1. 表明你所在地铁车厢的位置,比如你在第四节车厢,最下边的图就往上跳动(没拍出来);以及最下方的右侧有黄色箭头,指明地铁行进方向。

    2. 上方的电梯和垂直电梯示例图跟你的位置对应着,让你明确的知道要去往的目的地方向应该乘坐什么电梯过去 。

    3. 哪一侧开门标的很清楚,快出站的时候,两扇门下方的箭头就会不停的左右闪动,提醒你准备在这一侧出去。

    4. 中英文汉字、普通话、粤语、英文语音提示,方便不同人群的用户听懂提示。

    5. 语音播报的声音在正上方,最大限度的保证大家都能听到,避免坐过站。

    6. 地铁口方向有图文标识,还有动画小人,清晰的告知你出站的位置。

    这里不仅从声音层面给了提醒,还用动画形式给了及时提醒,为了防止用户“误操(早下车或晚下车)”,加重提醒。

    给我们的启示:为了防止做某种误操,尽可能的想法设法让用户减少或规避掉误操,提升用户体验。

    02 腾讯在线文档

    发生场景:在操作表格文档添加多行或多列时。

    (↑ 腾讯文档插入行或列时的截图)

    好处:添加列或行的时候有填写数字的小设计,在我们想一次性添加2行或2行以上的时候,可以一次性添加多行或多列,类似批量操作,很方便。

    这样可以简化很多用户的一行行或一列列的操作,蛮实用的。

    启发:多考虑实际的用户场景,看看用户具体的场景中是怎么操作的,总能挖掘出被忽略掉的小需求,可能这就是用户的“爽点“。

    03 商场的易拉门

    发生场景:一些商场进出口的大门。它的特点是拉开容易,关上的时候很慢。

    好处:拉开容易是考虑到进门的人进去更省力;关上很慢,是担心刮到用户的脚。

    可能很多人觉得有没有也无所谓,直到被门根刮到的时候才会想到,要是有这种设计就好了。

    设计师就能很好的洞察出用户的需求,才有了这种门的设计。能够深入的为人考虑,并且做到极致,就是好的设计。

    启发:在我们考虑产品流程设计时,就要尽量想到如何让用户更“省心、省力“的完成操作,让用户感受到产品的温度,从而与产品建立深度的链接。

    04 默认关闭声音

    场景:打开“爱奇艺”APP,默认声音是关闭的,无声浏览。

    (↑ 爱奇艺首页截图)

    好在哪里:在一些安静的环境,想打开看看有没有新剧或电影。如果很吵的话,用户会觉得打扰到别人,也就不会在这种环境中打开了。

    而这种默认静音的小功能,就能很好的解决这种问题,既能满足你想找电影的想法,也避免了在安静环境中打扰到别人的尴尬。

    这种考虑,同样也是深刻洞察到用户的需求,个人感觉很有用。

    启发:产品的迭代优化时,多考虑考虑用户的实际使用场景,深度挖掘不同人群的需求,其实体现的还是用户思维。

    05 手机号码用344的方式排列

    发生场景:手机里存储电话号码时。

    (↑ 手机存储手机号时的截图)

    好处:原来手机号存储手机的号码11位数是连起来的,现在基本都改为344排列(类似这种:188 8888 6666),中间都用空格隔开了,这就极大的方便了用户存储和记忆。

    那这是什么原理呢?

    其实就是大部分人的短时记忆容量最佳是4个单位,若超出4个单位,大脑就不容易【一次性】的去认知,最好把它分为2个部分去看待。那么这种用空格分隔开的方式,就很利于用户分辨手机号是否正确。

    启发:一点小小的变动,就可以让它容易记忆,极大的方便了用户使用。我们在实际设计场景中,也尽量考虑用很少的成本去极大的提升产品体验。

    06 IOS系统的辅助触控功能(虚拟按键)

    发生场景:设置此功能以后,屏幕中出现一个悬浮的虚拟按键,可点开操控手机。不触碰它时,3秒后自动变透明。

    (↑ IOS虚拟按钮界面截图)

    好处:它既能帮你操作手机,又能在你不需要的时候“隐身”(透明状态)。但是又不至于让你找不到它,因为它虽“隐身”,但一直在那儿。

    刚开始用的时候还不习惯,觉得在屏幕上碍事,现在还是会觉得。不过3秒主动变透明这个小设计挺好的。

    启发:产品设计时,既要让用户能够操作或看到,又不能打扰到用户太多,所以很多时候不能一味的追求既要还要这种“完美“,只能去尽可能平衡,最多的就是折中的办法。

    比如保存成功或操作提示,用toast提示就很合适,既要让用户知道,又不能像弹窗一样强提醒打扰到用户。

    07 智能冲水马桶

    发生场景:上厕所时,智能马桶会播放一些奇奇怪怪的音乐,盖住上厕所时的各种声音(自行脑补哈)。

    好处:考虑到人上厕所时会发出各种令人尴尬声音,为了避免尴尬的局面出现,让人尽可能以最舒服、最畅快的状态去上厕所,想到了用音乐去盖住这些令人尴尬的声音。

    不得不说,这个小设计真的非常好,至少在上厕所体验方面确实不错。

    启发:不仅要考虑到人实际的功能需求,还要考虑到人性的一些需求,比如社交。如果都做到了,那这款产品一般都会很不错。

    08 微信浮窗

    发生场景:看公众号文章时,突然收到一条微信。

    微信浮窗也出来很久了,为了不长时间的中断用户阅读历史文章,让用户能快速、省力的及时切换回来继续阅读文章。

    浮窗的出现可以完美的解决阅读文章和聊微信的矛盾,将文章或网页悬浮在聊天界面,既保证了阅读的流畅又可以保证用户能及时的回复微信消息。

    启发:尽可能不要打断用户正在做的操作,因为这是让用户很讨厌的行为。如果确实会被打断,想出一个折中的方案,满足两种功能,又不会中断其中一种操作。

    09 疫情期间,手机解锁新方式

    发生场景:苹果手机在疫情期间,优化了解锁手机的方式,识别到用户戴着口罩时,直接弹出密码输入界面。

    (↑ 识别戴口罩时的屏幕截图)

    好处:疫情严重的时候,取下口罩面部识别会加大被感染的风险,所以做了一些优化。

    当检测到用户戴着口罩时,直接弹出密码输入界面,不需要反复向上滑动,大幅的简化用户解锁操作。

    看似是个小小的优化改动,背后表现出来的是对人生命的尊重,以及人性背后需求的洞察。

    10 电梯一楼的“☆”的按钮

    发生场景:外卖员急匆匆的下楼送另一家快超时的外卖,急促的找1楼电梯按钮时。

    (↑ 电梯一楼☆按键的截图)

    好处:方便电梯里的乘客快速识别到一楼按钮,更快更好的操作电梯,减少找按钮的时间,从而提升用户乘坐体验。

    启发:涉及到用户操作时,做到主次分明,比如用户购买的按键可以设计的明显一些,如幽灵按钮,就可能增加转化率。

    11 微信读书奖励规则

    发生场景:读一分钟就有反馈(奖励一天体验卡或1个书币)

    (↑ 微信读书阅读奖励截图)

    好处:让你读书不再变得困难,哪怕读一分钟就有反馈(奖励),难度是慢慢的递增。

    虽然越往后越难,但是奖励也越来越多。可能你在不知不觉中就读了7天,然后周而复始,养成了在《微信读书》里阅读的习惯。

    这种于阅读奖励方式,既让用户轻易的养成读书习惯,又可以增加用户的黏性,为平台增加流量。

    启发:不要一开始就让用户做很难的操作,因为这样是反人性的。

    应该由浅入深,循序渐进。然后适当给用户一些激励类的反馈,再一点点的提高难度,做下一个更有难度的事情。

    这样就可以极大的降低用户完成任务的难度,成本降低了,用户就愿意留在平台上了。

    小结:

    其实综合来看,还是要充分使用用户思维:时刻把自己代入到不同的用户角色中去使用产品、体验产品,深刻的洞察出用户操作背后的需求。

    以上只是个人平时观察到的一些很好的小设计,可能身边还有很多很多,都是需要有人去发现。

    只要你能够用心去发现,总能看到身边一些巧妙而又有创意的设计,来为这个世界添姿增彩。

    当然了,为了让我们的生活变得更简单、更美好,不妨去大胆的创造更多更好的产品。

    今天的分享到这,希望对你有所帮助~

  • 探索‘信息转化’策略:提升用户点击率的小秘诀!

    产品设计 2023-11-16

    在用户体验设计中,信息转换是其中的一个重要环节,关乎将用户需求和设计概念转化为可交互、易理解的界面和功能。本文将深入阐述用户“信息转换”之后,产品中的UX设计细节。

    信息转换是用户体验(UX)设计中的重要环节,它关乎将用户需求和设计概念转化为可交互、易理解的界面和功能。

    优秀的UX设计离不开对信息转换的深入思考和专业处理,本文为您阐述深度专业细节:

    一、简介

    什么是‘信息转换’?简单来说就是把原有的信息/概念,转换成另外一种新的表示形式、文案,让用户忘记旧信息的,只关注新概念。

    举个例子:

    如果评论区没有一个人发表评论,大部分做法是直接显示成0。而在抖音上就直接显示成【抢首赞】,将「无」转化为「来竞争」的口吻,以此刺激用户赶紧发布第一个评论。

    信息转换通常发生在设计的初期阶段,通过对用户需求的深入研究和理解,将其转化为设计师可以操作和实现的形式。

    这个过程包括将用户的需求和目标细化、拆解,理解用户的使用场景和背景,以及将这些信息转化为可视化的概念、原型或设计方案。

    二、有何作用

    信息转换在APP设计和用户体验中扮演着重要的角色,它对于设计师和产品来说具有以下几个作用:

    1. 提供思路,确定设计方向

    能帮助设计师将抽象的用户需求,转化为具体的设计方向和概念,为后续的设计工作提供明确的目标。

    2. 加强理解,促进转化

    信息转换能为用户带来更明显、清晰、可视化的信息理解,从而大幅度减少用户决策,增加对功能或业务的转化

    3. 创造新体验,提升竞争力

    信息转换可转化成各种有意思的新事物(文案表达/视觉设计等),能给用户带来新的不一样感受,从而进一步提升产品的竞争力

    三、何时应用

    信息转换的通用性很强,大部分的APP场景都可以用到这个概念。比如:

    • 功能数据不好时:要强化引导、还是加强互动?
    • 设计需要创新时:要重画icon、还是考虑新交互?
    • 信息难以理解时:是否优化文案?

    四、如何应用

    1. 联想现实

    将你要展示的信息,转换成现实生活中看得见、摸得着、让人能产生画面的事物,能用户更加清楚地感知当前信息的概念。

    举个例子:

    keep:通过食物提升对目标的直观认知

    「Keep」是一款健身类应用,其中的热量目标设定功能采用了食物对应热量值的方式,以帮助用户更直观地认知热量摄入情况。

    通过将不同热量值与具体食物进行对应,使用户可以联想到现实生活中的对比物,且更多大厂案例分析,可搜索: 有蛋案例,从而对热量目标有更加明晰、清晰的理解。

    B站:更加真实的“速度感”设计

    b站的弹幕速度设置里,直接用人走路的速度状态(慢走和奔跑)表示弹幕速度的快与慢。

    解决了用户在理解和调整弹幕速度时可能遇到的困惑和难以把握的问题。传统的数字或文字标识可能相对抽象,难以直观地传达速度的概念,更全更细的8个维度解读:youdananli.com

    支付宝:更直白的筛选文案

    支付宝上的保险产品,里面的筛选文案描述就很直接、大众化,用最直白的话帮助用户筛选出合适的保险服务。

    通过使用直接、大众化的筛选文案描述,帮助用户更快、易懂地选择合适的保险服务,各大行业的优秀案例解析,浏览器搜索: 有蛋案例.从而解决了用户在保险选择过程中可能遇到的理解困难、流失的问题。

    2. 信息类比

    将当前概念,转换成与之同类型、更易懂、更生活化的辅助信息,帮助用户更好理解你要传达的内容。

    举个例子:

    支付宝:可视化的赚钱收益

    支付宝在收益上设计得很具象,当用户切换不同的收益数据时,下方也会将该收益转换成可具体化的事物,不同的收益对应不同的物品

    有助于用户直观感受到理财产品的收益,从而增强用户对理财产品的认知和信任感,进一步加强用户与产品之间的互动性和留存,而且如果觉得设计没灵感,可以上有蛋案例 浏览更多创意

    咸鱼:通过降价工具提高售出率

    闲鱼已发布的商品卖不出去的时候,可以通过有趣的降价工具,过左右滑动价格到刻度上,确定降价幅度,下方会有针对这一刻度对应的折扣给出情感化的提示。以此来提升商品售出率

    3. 重新定义

    放弃原有信息给人的固定认知,将其转化成另外一个维度、赋予其新概念的,打破既有的框架和限制,让用户对其产生新的认识,以新带老。

    举个例子:

    星巴克:用暗号来代替取餐号

    通常的取餐码都是有字母或数字组成的(如A302),然而星巴克之前有段时间却很另类,将冰冷的取餐码转化成一些有趣的’暗号’。

    如灰色杏仁,使得在取餐过程像一段神秘交易,特别有意思。

    百度知道:空数据时的引导思路

    数据为0的场景是我们容易忽略的(如0点赞),而百度知道就就直接显示成【抢首赞】。

    将“空无”转化为“比赛/竞争”的口吻刺激用户操作。

    解决了用户在点赞为0的情况下,无法进行点赞等操作时的无聊和疲劳感,同时激发了用户的竞争欲,提高了用户参与度和互动频率且

    理财通:把“隐蔽”换一种叫法

    腾讯理财通在资产区页面隐藏金额时,不是用传统的加密*号,而是采用了非常有趣的成语文案。

    比如【空空如也】【分无分文】【日进斗金】等等,这些成语还会随着资金的变化而变化。

    4. 调用发音

    在一些UI图标等界面元素的设计上,联想起该元素的叫法、英文、谐音等发音,可以起到不错的化学反应。

    举个例子:

    网易云音乐:热评与“水瓶”的谐音

    网易云音乐的评论区里,只要点赞数为1000以上。原本的【大拇指】点赞图标,就会变成了【水瓶】图标样式,对应了「热评」与「热瓶」的谐音。

    谐音的图标设计一定程度上可给用户带来欢乐和新鲜感,以增加评论区的活跃度,引导用户参与到点赞互动中来。

  • 在我们的设计群里,如何快速搭建数据可视化项目

    研究 2023-10-12
    在我们的设计群里,大数据、可视化、数据大屏等一系列名词越来越频繁地被提及。有时候讨论这个话题时,设计师小伙伴会吐槽这个领域太专业,因为找到可以参考和复用的素材较少,所以在实际工作中很难快速完成页面搭建。今天我将从组件库的复用、图表的快速生成以及页面的高效布局这三个维度,为大家介绍如何快速搭建数据可视化项目。首先,要快...

     image.png

    在我们的设计群里,大数据、可视化、数据大屏等一系列名词越来越频繁地被提及。有时候讨论这个话题时,设计师小伙伴会吐槽这个领域太专业,因为找到可以参考和复用的素材较少,所以在实际工作中很难快速完成页面搭建。今天我将从组件库的复用、图表的快速生成以及页面的高效布局这三个维度,为大家介绍如何快速搭建数据可视化项目。


    首先,要快速搭建数据可视化项目,一个好的组件库是必不可少的。组件库可以包含各种可视化组件和样式,可以供设计师快速选择和应用。通过使用组件库,设计师们可以避免从零开始创建每个组件,节省大量的时间和精力。此外,组件库还可以提供一致的风格和布局,使整个项目看起来更加统一和专业。


    其次,图表的快速生成也是提高搭建速度的关键点之一。在数据可视化项目中,图表通常是主要的展示方式之一。为了快速生成图表,设计师可以使用一些专业的可视化工具或库,如D3.js、Highcharts等。这些工具或库提供了各种图表类型和配置选项,可根据需求快速生成所需的图表,并支持对图表进行进一步的定制和调整。


    最后,高效布局是快速搭建数据可视化项目的另一个重要方面。通过合理的页面布局,可以使信息结构清晰,排版美观。设计师可以使用栅格系统或布局框架来实现快速布局,如Bootstrap、Ant Design等。这些工具提供了灵活的布局方式和预定义的样式,可以帮助设计师更快地完成页面的搭建和排版。


    总而言之,要快速搭建数据可视化项目,我们可以从组件库的复用、图表的快速生成以及页面的高效布局这三个维度入手。通过合理选择和应用组件库、使用专业的可视化工具和库以及运用高效的布局方法,设计师们能够更快速地完成数据可视化项目的搭建工作。如需进一步了解或指定修改内容,请提供更多信息,我将尽力满足您的需求。


  • 面对错综复杂的信息,人类的大脑有着独特的能力

    研究 2023-10-07
    面对错综复杂的信息,人类的大脑有着独特的能力,可以快速识别并提取出其中的有意义的模式和结构。这种能力被称为认知辨别能力,是我们理解和适应环境的重要基础。认知辨别能力可以帮助我们从海量的信息中找到准确、可靠的来源。在研究论文或文章时,我们需要根据以下几个方面来评估来源的可靠性:1. 来源的可信度:首先,我们需要考虑作者或...

    面对错综复杂的信息,人类的大脑有着独特的能力,可以快速识别并提取出其中的有意义的模式和结构。这种能力被称为认知辨别能力,是我们理解和适应环境的重要基础。

    image.png

    认知辨别能力可以帮助我们从海量的信息中找到准确、可靠的来源。在研究论文或文章时,我们需要根据以下几个方面来评估来源的可靠性:


    1. 来源的可信度:首先,我们需要考虑作者或机构的信誉和专业性。通过了解作者的背景和相关研究经历,我们可以判断其研究成果的可信度。此外,出版机构的声誉和审稿程序也是评估来源可靠性的重要依据。


    2. 方法学的严谨性:研究的方法和设计对于研究结果的可靠性至关重要。我们需要关注研究是否采用了科学的方法和可靠的数据收集技术,以及研究样本的选择是否合理。对于实验研究来说,其中的控制组和实验组是否合理划分也是关键因素。


    3. 结果的一致性:在评估来源可靠性时,我们还可以参考相关研究的结果。如果多个独立的研究都得出了相似或一致的结论,这增加了研究结果的可靠性。通过了解该领域的研究进展和主要观点,我们可以更好地判断研究结果的可靠性。


    基于以上几个方面,我们可以选择具有可靠性和权威性的来源来研究论文或文章。同时,我们也应该注意来源之间的多样性,以避免过度依赖某一个特定的观点或研究结果。


    在撰写论文或文章时,我们需要将研究结果以结构良好的方式组织。一篇优秀的论文应该包括引言、研究方法、实验结果和讨论等部分。引言部分可以对研究背景进行介绍,并提出研究问题。研究方法部分需要详细描述所采用的方法和实验设计。实验结果部分应该以数据和图表的形式展示,以支持研究结论。最后,讨论部分可以对研究结果进行解释和分析,并提出进一步的研究方向。


    在撰写过程中,我们还应该注意准确记录引用来源。每个使用到的观点、数据和实验结果都应该准确标注其来源,包括作者姓名、文章标题、出版年份、出版机构等信息。这不仅是学术诚信的体现,也有助于读者进一步了解相关研究背景和探究原文细节。


  • 图标设计是现代设计中不可或缺的一部分

    研究 2023-10-07
    图标设计是现代设计中不可或缺的一部分 ,它为我们提供了一个直观而简洁的方式来表示各种概念和内容。在这篇文章中,我将为您梳理图标设计的历史,从早期的符号使用到现代的矢量图标设计。早期的图标设计主要使用简单的符号来表示特定的含义。例如,在古埃及时期,人们使用了各种象形文字和符号来记录信息和传达意思。这些符号通常都比较简单,...

    图标设计是现代设计中不可或缺的一部分 ,它为我们提供了一个直观而简洁的方式来表示各种概念和内容。在这篇文章中,我将为您梳理图标设计的历史,从早期的符号使用到现代的矢量图标设计。

    image.png

    早期的图标设计主要使用简单的符号来表示特定的含义。例如,在古埃及时期,人们使用了各种象形文字和符号来记录信息和传达意思。这些符号通常都比较简单,易于辨认和理解。


    随着时间的推移,图标设计逐渐发展成为一门独立的艺术形式。在19世纪,随着工业革命的推进,许多新的行业和职业出现了,需要有不同的图标来代表它们。比如,医生用一个带有蛇的杖作为他们的标志,这个符号代表着古希腊神话中的阿斯克勒庇俄斯和赫尔墨斯。


    进入20世纪,图标设计开始受到更多的关注和研究。随着摩斯电码和真空管的发明,人们开始使用有限的符号来表示复杂的信息。大量的科技公司也开始使用图标作为他们的品牌标识,比如IBM和苹果公司的标志。


    在20世纪60年代和70年代,计算机科技的快速发展催生了图标设计的新篇章。图标设计师们开始探索使用矢量图形来创建更加精确和可缩放的图标。这种新的图标设计方法使得图标在不同尺寸和分辨率下都能保持清晰和清晰可辨认。


    随着互联网的普及,图标设计变得更加重要和广泛使用。每个网站和应用程序都需要一个独特而有吸引力的图标来吸引用户。同时,移动设备的流行也推动了图标设计的进一步发展,因为小屏幕上的图标需要更多的细节和精确性。


    现代的图标设计已经成为一门复杂而有挑战性的艺术形式。图标设计师们必须考虑到不同平台和设备的要求,并且要确保他们的设计在不同的背景和场景下都能够显眼和易于辨认。


    总结而言,图标设计是一个重要的设计领域,它为我们提供了一种简洁而直观的方式来传达信息和概念。随着科技的不断进步,图标设计也在不断发展和演变,为我们提供了更好的用户体验。


    如果您对某个特定的图标设计历史感兴趣或对其他相关问题有任何疑问,请告诉我,我将竭诚为您提供更多信息和帮助。


  • 优化驾驶员的注意力和减少分心

    研究 2023-09-07
    车载界面设计需要遵循一些重要的原则,以优化驾驶员的注意力和减少分心。以下是一些关键的车载界面设计原则:1. 简洁明了:车载界面应该以简洁明了的方式呈现信息,避免过多的文字和图案,以免干扰驾驶员的注意力。2. 易于操作:界面按钮和控制器应该便于操作,最好能够通过直观的手势、语音控制或物理按键等方式进行操作,以减少分散注意...

    车载界面设计需要遵循一些重要的原则,以优化驾驶员的注意力和减少分心。以下是一些关键的车载界面设计原则:

    image.png

    1. 简洁明了:车载界面应该以简洁明了的方式呈现信息,避免过多的文字和图案,以免干扰驾驶员的注意力。


    2. 易于操作:界面按钮和控制器应该便于操作,最好能够通过直观的手势、语音控制或物理按键等方式进行操作,以减少分散注意力。


    3. 一致性:车载界面应该保持一致的布局和操作逻辑,这样驾驶员在不同情境下都能轻松理解和使用界面。


    4. 信息层级:将重要的信息和功能放置在更显眼的位置,避免深层次的菜单和复杂的操作,在限制驾驶员注意力的同时提供必要的信息。


    5. 操作反馈:及时给出操作反馈,例如点击按钮时的声音或震动反馈,以确保驾驶员知道他们的操作是否成功。


    6. 接口可定制性:考虑到驾驶员的个人喜好和习惯,提供可定制的界面选项,让他们根据自己的需求进行个性化设置,提高舒适度和效率。


    这些原则能够帮助设计人员创建适合驾驶环境的车载界面,确保驾驶员能够专注于驾驶任务,提升驾驶安全性和用户体验。如果您需要更具体的信息或有其他问题,请告诉我。


  • 面对这种差异,我们可以尝试做进一步的分析

    研究 2023-09-07
    小羊望着落地窗外的夜色,心情十分迷茫。七年的辛勤付出和不断努力,却始终未能实现理想中的职业发展。身边的同辈们似乎纷纷脱颖而出,转型成功、升职加薪,而他却一直徘徊在原地,没有看到明显的改变。这种焦虑感沉重地压在小羊的心头,让他开始质疑自己的选择和决定。他自怨自艾地想:是不是自己选错了行业?是不是没有充分发挥自己的潜力?或...

    小羊望着落地窗外的夜色,心情十分迷茫。七年的辛勤付出和不断努力,却始终未能实现理想中的职业发展。身边的同辈们似乎纷纷脱颖而出,转型成功、升职加薪,而他却一直徘徊在原地,没有看到明显的改变。

    image.png

    这种焦虑感沉重地压在小羊的心头,让他开始质疑自己的选择和决定。他自怨自艾地想:是不是自己选错了行业?是不是没有充分发挥自己的潜力?或者根本就是自己不够优秀?


    他曾向主管表达过自己的想法和期望,希望能得到更多的机会来证明自己的实力。然而,数月过去了,依旧没有听到任何实质性的回应。这让他的自信心开始动摇,甚至开始怀疑自己所努力的一切是否值得。


    然而,在这片迷茫的阴霾中,小羊还没有放弃。他知道,人生没有捷径可走,职业生涯亦如人生一般需要不断地探索和努力。他决定要积极主动地去摸索自己的职业规划,不再依赖别人的意见和观点。


    于是,小羊开始从自己的内心深处寻找答案。他意识到,自己应该找出自身的优势和价值所在,并将其发挥到极致。他是一位设计师,拥有独特的审美和创意能力。或许,他可以尝试创业,将自己独特的设计理念付诸实践,做出属于自己的品牌。


    然而,在做出终极决定之前,小羊决定再次与主管沟通一次。他想了解自己现在所处的环境以及公司的发展规划,看看是否有适合他的机会和挑战。这次,他决心把自己的期望和需求更清晰地传达给主管,同时也准备好接受可能的不同结果。


    小羊明白,追求梦想并非一蹴而就,需要坚持和付出努力。他决心在这段迷茫的旅程中,不断寻找自我突破和成长的机会。每一个困难和挫折都是他成长的踏脚石,在他前进的路上留下深深的印记。


    愿小羊能够坚定信念,勇敢面对生活中的挑战,最终找到属于自己的光芒,绽放出属于他独特的职业成就。



让你的品牌快速脱颖而出,抢占市场份额,提升销量
免费获取方案及报价
*我们会尽快和您联系,请保持手机畅通